
Stochastic Processes and their Applications 84 (1999) 343–355
www.elsevier.com/locate/spa

Sequential point estimation of parameters
in a threshold AR(1) model

Sangyeol Leea ; ∗, T.N. Sriramb
aDepartment of Statistics, Seoul National University, Seoul, 151-742, South Korea

bDepartment of Statistics, University of Georgia, Athens, GA 30602, USA

Received 16 November 1998; received in revised form 2 June 1999

Abstract

We show that if an appropriate stopping rule is used to determine the sample size when es-
timating the parameters in a stationary and ergodic threshold AR(1) model, then the sequential
least-squares estimator is asymptotically risk e�cient. The stopping rule is also shown to be
asymptotically e�cient. Furthermore, non-linear renewal theory is used to obtain the limit distri-
bution of appropriately normalized stopping rule and a second-order expansion for the expected
sample size. A central result here is the rate of decay of lower-tail probability of average of
stationary, geometrically �-mixing sequences. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The idea (due to Robbins, 1959) of using stopping rules to determine precisely the
right sample size needed to construct a point estimator has been used extensively in the
literature. For the independent and identically distributed (i.i.d.) setup, theoretical per-
formance of sequential point estimators has been studied in detail and these are lucidly
described in Woodroofe (1982), Martinsek (1983), and Ghosh et al. (1997). In the last
decade, this intuitive idea has been extended to models with dependent data, such as
linear time series and branching processes. See, for instance, Sriram (1987,1988) and
Sriram et al. (1991) for sequential estimation problems arising in autoregressive (AR)
model of order 1 and branching processes, respectively, and Fakhre-Zakeri and Lee
(1992,1993) and Lee (1994,1996) for extension of Sriram’s results to AR(p) models
and linear processes.
It is now natural to ask whether sequential methods can be extended to estimation

problems arising in nonlinear time series models. Recently, Sriram (1998) proposed a
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stopping rule to construct a sequential �xed-size con�dence ellipsoid for the parame-
ters in threshold autoregressive (TAR) models. The purpose of this paper, however, is
to construct a point estimator based on a stopping rule for the estimation of param-
eters in TAR models. Asymptotic properties of these sequential procedures are then
studied.
Sequential point estimation problems generally require a study of growth rate of

mean-squared error (MSE) of estimators. Since the estimators involved in time-series
setup are usually of ratio-type, in order to obtain the growth rate of MSE, one needs
to the study the rate of convergence of lower-tail probability of the denominator vari-
ables. In his work, Lee (1994) used the linearity of AR(p) time series (among other
things) crucially to obtain such lower-tail probability rates. Unfortunately, since TAR
models are nonlinear, we cannot duplicate the techniques from Lee (1994). We adopt
alternative methods of obtaining such lower-tail probability rates (see Proposition 2.1
and Lemma 2.2 below) and thus obtain a rate for MSE. We believe that the techniques
adopted here will be useful more generally.
Threshold models, introduced by Tong (1978a,b), are generally agreed to be useful

in modeling discrete time series that exhibit piece-wise linearity. In fact, Tong and
Lim (1980) provide many examples where TAR models not only provide a better
�t than linear models but also exhibit strictly nonlinear behavior (e.g., limit cycles,
jump resonance, harmonic distortion, etc.) which linear models cannot duplicate. For
a comprehensive study of threshold models and other nonlinear models, see Tong
(1983,1990).
A TAR (1) process {Xi} is de�ned by
Xi = �1X+i−1 + �2X

−
i−1 + �i; i = 1; : : : ; n; (1.1)

where �=(�1; �2) are real parameters not necessarily equal, {�i} is a sequence of i.i.d.
random variables (r.v.’s), and x+ = max(x; 0) and x− = min(x; 0) for a real number
x. Throughout it is assumed that E�1 = 0¡E�21 = �

2¡∞ where �2 is an unknown
constant and the distribution of �1 is unspeci�ed.
It has been shown in Petruccelli and Woolford (1984) that the process {Xi;¿0}

de�ned in (1.1) is ergodic if and only if

� ∈ �=
{(

�1
�2

)
: �1¡ 1; �2¡ 1; �1�2¡ 1

}
: (1.2)

This implies the existence of an invariant probability distribution for {Xi}. We shall as-
sume that the initial random variable X0 has its distribution �(·) the invariant probability
distribution of the Markov chain {Xi} so that the process {Xi} is strictly stationary.
Also, we note from Chan et al. (1985) that E|�1|k ¡∞ for some integer k¿1 implies
that E|X0|k ¡∞ for each � ∈ �.
We are interested in the problem of point estimation of the parameters �1 and �2

in (1.1). Suppose we estimate the parameters �1 and �2 in (1.1) by their least-squares
estimators

�̂1; n =
n∑
i=1

Xi X+i−1

/
n∑
i=1

X+2i−1 (1.3)
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and

�̂2; n =
n∑
i=1

Xi X−
i−1

/
n∑
i=1

X−2
i−1 (1.4)

subject to the loss function

Ln = An−1(�̂n − �)′�n(�̂n − �) + n; (1.5)

where �̂n =
(
�̂1; n
�̂2; n

)
and �n =diag(

∑n
i=1 X

+2
i−1;

∑n
i=1 X

−2
i−1) is a diagonal matrix. In (1.5),

A(¿ 0) re
ects the importance of quadratic error relative to sampling cost which is
assumed to be one unit per observation. Our objective here is to minimize the risk in
estimation by choosing an appropriate sample size.
From Theorem 3:2 of Petruccelli and Woolford (1984) it follows that

�−2(�̂n − �)′�n(�̂n − �) D→ �22 as n→ ∞; (1.6)

where �22 is a chi-square random variable with two degrees of freedom. Suppose for
the moment that the sequence

{Qn = (�̂n − �)′�n(�̂n − �); n¿2} is uniformly integrable (u:i:): (1.7)

The result in (1.7), incidentally, is established in Proposition 2.1 below under certain
moment conditions. Now, (1.6) together with (1.7) yields

Rn = ELn = 2n−1A�2 + n+ o(n−1) as n→ ∞: (1.8)

It can then be shown that the risk Rn is approximately minimized by

n0(A) ≈ (2A)1=2� (1.9)

with the corresponding minimum risk

Rn0(A) ≈ 2(2A)1=2�: (1.10)

However, when �2 is unknown, n0(A) cannot be used in practice and there is no �xed
sample size that will achieve the minimum risk (1.10).
To overcome this, we replace the unknown �2 by its least-squares estimator �̂2n

de�ned by

�̂2n = n
−1

n∑
i=1

(Xi − �̂1; n X+i−1 − �̂2; n X−
i−1)

2: (1.11)

Now, we mimick the nature of n0(A) and de�ne a stopping rule TA by

TA = inf{n¿nA: n¿(2A)1=2�̂n}; (1.12)

where nA is an initial sample size possibly depending on A. The aim here is to assess
the performance of the stopping rule TA; ETA, and the risk of the sequential procedure
RA = ELTA as the penalty A→ ∞. The following results are established.

Theorem 1. Suppose that E|�1|4p¡∞ for p¿ 2 and � ∈ � de�ned in (1:2). Let
the initial sample size nA be such that A1=2(1+�)6nA=o(A1=2) with � ∈ (0; (p− 2)=2).
Then; as A→ ∞

TA=n0(A)→ 1 a:s:; (1.13)
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E|TA=n0(A)− 1| → 0 (1.14)

RA=Rn0(A) → 1: (1.15)

Theorem 2. If E|�1|4¡∞ and in addition nA = o(A1=2); then

[TA − (2A)1=2�]=
√
(2A)1=2� D→ N(0; �2); (1.16)

where �2 = (1=4)Var(�21=�
2). Furthermore; under the conditions of Theorem 1; if the

distribution of �1 is nonarithmetic then

ETA − (2A)1=2� = c1 + o(1) as A→ ∞; (1.17)

where the constant c1 is given in (3:16) below.

The result in (1.14) says that, as the penalty for estimation error tends to in�nity,
the stopping rule de�ned in (1.12) is asymptotically e�cient while (1.15) says that
the associated sequential procedure is asymptotically risk e�cient. Result in (1.16) de-
scribes the limiting distribution of TA while (1.17) explicitly evaluates the second-order
behavior of ETA with n0(A) as its leading term. Proof of Theorem 1 along with some
rate of convergence results which are of independent interest are given in Section 2.
Theorem 2 is proved in Section 3 using nonlinear renewal theory developed by Lai
and Siegmund (1977,1979) and Hagwood and Woodroofe (1982).

2. Basic convergence results

A central result of the paper is Proposition 2.1 where a crucial rate of convergence for
the lower-tail probability of the sequences {n−1∑n

i=1 X
±2
i−1; n¿1} is obtained. This is

then used to establish the uniform integrability of {Qn; n¿1} de�ned in (1.7). The for-
mer result is derived as a consequence of a general result proved in Lemma 2:2 which
obtains a rate of convergence for the lower-tail probability of average of bounded, ge-
ometrically �-mixing, stationary r.v.’s. In addition, we also obtain rate of convergence
of tail behavior of TA. All these results are then used to prove Theorem 1. First we
note the following: For �̂2n de�ned in (1.11)

�̂2n = n
−1

n∑
i=1

�2i − n−1Qn; (2.1)

where Qn is as de�ned in (1.7). Consequently,

max{Qn; n�̂2n}6
n∑
i=1

�2i : (2.2)

Throughout this paper Fn = �{X0; �1; : : : ; �n} and || · ||p denotes the Lp-norm. The
following lemma gives a rate of convergence of the Lp norm of numerator r.v.’s in
(1.3) and (1.4).
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Lemma 2.1. If E|�1|p¡∞ for p¿2; then for 0¡u6v¡∞; the following results
hold: ∣∣∣∣∣

∣∣∣∣∣ max
[un]6l6[vn]

∣∣∣∣∣l−1=2
l∑
i=1

X±
i−1�i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p

=O(1) as n→ ∞; (2.3)

where X±
i denotes either X+i or X−

i ; and the sequence{
n−1=2

n∑
i=1

X±
i−1�i; n¿1

}
(2.4)

is uniformly continuous in probability (u.c.i.p.) and stochastically bounded.

Proof. Under the assumptions in (1.1) it is easily checked that {∑n
i=1 X

±
i−1�i; n¿1}

is a martingale sequence with respect to Fn de�ned above. Now, as in the proof of
Lemma 1 of Lee (1994), use the Doob’s maximal inequality, the Burkh�older’s in-
equality (see, Chow and Teicher, 1978, Theorem 11:2:1), the moment inequality (with
p¿2), and the stationarity of {Xi} to get the result in (2.3).
The stochastic boundedness of {n−1=2∑n

i=1 X
±
i−1�i; n¿1} follows from (2.3). The

u.c.i.p. of {n−1=2∑n
i=1 X

±
i−1�i; n¿1} can be proved using arguments in Sriram (1988)

or Lee (1994).

Proposition 2.1. For every 0¡�¡E(X±
0 )

2; there is a � ∈ (0; 1) such that

P

{
n−1

n∑
i=1

X±2
i−1¡�

}
=O(n5=2�

√
n) as n→ ∞: (2.5)

Moreover; if in addition; E|�1|4s ¡∞ for some s¿1; then for all 0¡u6v¡∞
sup
n¿1

E max
[un]6l6[vn]

Qsl ¡∞ (2.6)

and; consequently; for all q¡s

{Qqn; n¿2} is uniformly integrable: (2.7)

In particular; EQn → 2�2 as n→ ∞; and hence (1:8) holds.

The following lemma concerns the rate of decay of lower-tail probability of average
of bounded, geometrically �-mixing, stationary r.v.’s. This lemma will be used to prove
Proposition 2.1. For a comprehensive study of mixing theory see Doukhan (1994).

Lemma 2.2. Let {Yi; i¿0} be a stationary process and Gj = �(Y0; : : : ; Yj); j¿0; be
a nondecreasing sequence of �-�elds. Assume further that 06Yi61 for all i¿0; and
that the process {Yi} is geometrically �-mixing; that is;

�n = E

∣∣∣∣∣
∣∣∣∣∣supk¿0

sup
V∈G∗

n+k

|P(V |Gk) −P(V )|
∣∣∣∣∣
∣∣∣∣∣
∞

=O(�n) as n→ ∞; (2.8)
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where G∗
j =�(Yj; Yj+1; : : :); for a random variable Y; ||Y ||∞=ess sup |Y | and � ∈ (0; 1)

is some real number. Then for every a ∈ (0; EY1); there is a � ∈ (0; 1) such that

P

(
n∑
i=1

Yi ¡na

)
=O(n5=2�

√
n) as n→ ∞: (2.9)

Proof. De�ne a sequence {Yn; i} of r.v.’s by

Yn; i =
n2∑
j=1

[(j − 1)=n2]I{( j−1)=n26Yi6j=n2} (2.10)

for i¿1. Let b be a number such that a¡b¡EY1 and N be a positive integer such
that a¡b¡EYn;16EY1 for all n¿N . Let m=m(n)= [

√
n]. It is then possible to �nd

l(¿1) and r = 0; : : : ; m− 1 such that n= lm+ r. For simplicity, take l= 2k for k¿1
and r = 0, that is, n = 2km. Now, de�ne r.v.’s {Zi; 16i6n} and {Z ′

i ; 16i6n} such
that

Z1 =
m∑
i=1

Yn; i; Z ′
1 =

2m∑
i=m+1

Yn; i

Z2 =
3m∑

i=2m+1

Yn; i; Z ′
2 =

4m∑
i=3m+1

Yn; i

...
...

Zk =
(2k−1)m∑

i=2(k−1)m+1
Yn; i; Z ′

k =
2km∑

i=(2k−1)m+1
Yn; i:

Then, since |Yi − Yn; i|61=n2, for large n we can choose a′ ∈ (a; b) such that

P

{
n∑
i=1

Yi ¡na

}
6 P

{
n∑
i=1

Yn; i ¡na′
}

6 P

{
k∑
i=1

m−1Zi ¡ka′
}
+ P

{
k∑
i=1

m−1Z ′
i ¡ ka′

}

= I + II: (2.11)

We will now show that I =O(n5=2�
√
n) as n→ ∞. To this end, let G̃1 =Gm; : : : ;G̃k =

G(2k−1)m. Then, for each j; m−1Zj is G̃j measurable and 06m−1Zj61. Furthermore,
for each j,

E|E(m−1Zj|G̃j−1)− E(m−1Zj)|

6m−1
m∑
v=1

E|E(Yn; 2( j−1)m+v|G[2( j−1)−1]m)− EYn; 2( j−1)m+v|

=O(n2�m) (2.12)
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by (2:10) and (2:8). Since EYn;1 → EY1 as n → ∞ and EY1¿b, for large n it is
possible to choose �0¿ 0 such that EYn;1 − �0¿b. For this �0, de�ne the set

S = {|E(m−1Zj|G̃j−1)− E(m−1Zj)|¡�0 for j = 1; : : : ; k}:
Note that, on S

k∑
j=1

E(m−1Zj|G̃j−1) =
k∑
j=1

E(m−1Zj) +
k∑
j=1

[E(m−1Zj|G̃j−1)− E(m−1Zj)]

¿ k(EYn;1 − �0)¿kb:

Now apply a Theorem of Freedman (1973) (see (4a) and Note) to get

P




k∑
j=1

m−1Zj ¡ka′; S




6P




k∑
j=1

m−1Zj ¡ka′;
k∑
j=1

E(m−1Zj|G̃j−1)¿kb




6e−k(b−a
′)2=2b =O(e−d

√
n) (2.13)

for some d¿ 0 where we used the fact that k = n=(2m) and m = [
√
n]. On the other

hand, by the Markov inequality and (2.12)

P(Sc)6 �−10

k∑
j=1

O(n2�m)

= O(n5=2�
√
n); (2.14)

since k = O(
√
n) and � is some number in (0,1). Applying (2.13) and (2.14) to I in

(2.11) we get that I =O(n5=2�
√
n). Similar arguments as above yield II =O(n5=2�

√
n).

Hence the lemma is established.

Proof of Proposition 2.1. Let � be as in the proposition. De�ne X̃
+2
i = X+2i I{X+2i 6K}

for each i¿0 and K¿1. Choose K large enough and �x it so that �1 = EX̃
+2
0 ¿�.

Then, clearly

P

(
n−1∑
i=0

X+2i ¡ �n

)
6P

(
n−1∑
i=0

X̃
+2
i ¡ �1n

)
6P

(
n−1∑
i=0

Yi ¡�′n

)
;

where Yi = K−1X̃
+2
i and �′ = K−1�1. Then 06Yi61 for i¿0. Furthermore, by the

assumptions made in Section 1 and results from Doukhan (1994, see (2:4:1) and (2:4:3)
on pp. 88 and 89) we have that condition (2.8) of Lemma 2.2 is satis�ed by {K−1X̃

+2
i }.

Hence, the required result in (2.5) follows from (2.9) of Lemma 2.2. The result for
{X−2

i−1} in (2.5) follows similarly.
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As for (2.6), �rst note from (1.7), (1.3) and (1.4) that

Ql =
l∑
i=1

X+2i−1(�̂1;l − �1)2 +
l∑
i=1

X−2
i−1(�̂2;l − �2)2

=Q(1)l + Q(2)l : (2.15)

We will �rst consider the term Q(1)l in (2.15). For a �̃¿ 0 (to be chosen later) write

Q(1)l = Q(1)l I
{∑l

i=1
X+2i−1¡�̃l

} + Q(1)l I{∑l

i=1
X+2i−1¿�̃l

}
6

(
l∑
i=1

�2i

)
I{∑l

i=1
X+2i−1¡�̃l

} + �̃−1
(

l∑
i=1

X+i−1�i
/√

l

)2
;

where we used (2.2) in the �rst term. By (2.3) we have that

sup
n¿1

E max
[un]6l6[vn]

(
l∑
i=1

X+i−1�i
/√

l

)2s
¡∞: (2.16)

By the Cauchy–Schwarz inequality and the Minkowski inequality

E max
[un]6l6[vn]

(
l∑
i=1

�2i

)s
I{∑l

i=1
X+2i−1¡�̃l

}

6E

(
[vn]∑
i=1

�2i

)s
I{∑[un]

i=1
X+2i−1¡�̃[vn]

}

6O(ns)||�21||s2s P1=2
{
[un]∑
i=1

X+2i−1¡�̃B0[un]

}

=o(1) as n→ ∞; (2.17)

where we let B0 = [vn]=[un](=O(1)), choose �̃ such that �̃B0 ∈ (0; EX+20 ) and used
(2.5). Hence it follows from (2.16) and (2.17) that supn¿1Emax[un]6l6[vn]Q

(1)s
l ¡∞.

Similarly, it can be shown that supn¿1 Emax[un]6l6[vn]Q
(2)s
l ¡∞ for Q(2)l de�ned in

(2.15). Hence assertion (2.6) and the proposition are established.

Lemma 2.3. If E|�1|2s ¡∞ for s¿1 and nA =O(A1=2); then for TA de�ned in (1:12)
and n0(A) de�ned in (1:9)

{|TA=n0(A)|s;A¿1} is u:i: (2.18)

Proof. De�ne

T̃ A = inf

{
n¿nA: n¿(2A)1=2

(
n−1

n∑
i=1

�2i

)}
:

Then by Lemma 2 of Chow and Yu (1981), {|T̃ A=n0(A)|s;A¿1} is u.i. However, by
(2.2) we have that TA6T̃ A and hence the required result is obtained.
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The next lemma gives the rate of convergence of the upper- and lower-tail probability
of TA. The proof of it is omitted as it is exactly same as that of Lemma 7 of Lee
(1994) [also, see Lemma 4 of Sriram (1988)].

Lemma 2.4. If E|�1|4s ¡∞ for s¿1 and nA¿A1=2(1+�) for some �¿ 0. Then for
0¡�¡ 1

P{TA¡ (1− �)(2A)1=2�}=O(A−(s−1)=2(1+�)) (2.19)

and

P{TA¿ [(1 + �)(2A)1=2�] + 1}= o(A−(s−1)=2) (2.20)

as A→ ∞.

Proof of Theorem 1. Since �̂2n → �2 a.s. as n → ∞ (see Petruccelli and Woolford,
1984, for instance) the result in (1.13) follows from the de�nition of TA in (1.12).
This together with Lemma 2.3 yields (1.14).
For (1.15), write using the notations in (1.7),(1.5) and (1.10) that

RA=Rn0 ≈ {AET−1
A QTA + ETA}=[2(2A)1=2�]:

By (1.14) it su�ces to show that

(2A)1=2�ET−1
A QTA → 2�2: (2.21)

Let C = {[(1 − �)n0(A)]6TA6[(1 + �)n0(A)] + 1} for � ∈ (0; 1). By the Cauchy–
Schwarz inequality, (2.6), and (2.19) and letting n1(A) = [(1− �)n0(A)] we have

(2A)1=2�ET−1
A QTAI{T¡n1(A)}6 (2A)1=2�||T−1

A QTAI{nA6T6n1(A)}||2
×P1=2(TA6n1(A))

6 (2A)1=2� sup
n

||Qn||2
( ∞∑
n=nA

n−2
)1=2

P1=2(TA6n1(A))

= A1=2O(n1=2A )O(A
−(s−1)=4(1+�))

→ 0 as A→ ∞: (2.22)

Similar arguments using (2.20) yields (2A)1=2�ET−1
A QTAI{T¿n2(A)} → 0 as A → ∞

where n2(A) = [(1 + �)n0(A)] + 1. Also, by (2.4), the fact that n−1
∑n

i=1 X
±2
i−1 →

EX 20 a.s., and repeated application of Lemma 1:4 of Woodroofe (1982) it follows that
{Qn; n¿1} is u.c.i.p. Therefore, from (1.6), (1.13) and the Anscombe’s theorem it
follows that

(2A)1=2�T−1
A QTAIC

D→ �2�22 as n→ ∞: (2.23)

Moreover, by (2.6) we have for any �¿ 1

E[(2A)1=2�T−1
A QTAIC]

�6 [n1(A)]−�(2A)�=2��E max
n1(A)6n6n2(A)

Q�n

= O(1):
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Therefore, {(2A)1=2�T−1
A QTAIC ;A¿1} is u.i. and hence

(2A)1=2�ET−1
A QTAIC → 2�2 as A→ ∞: (2.24)

The result in (2.21) now follows from (2.22) to (2.24). Hence the theorem is estab-
lished.

3. Asymptotic distribution and second-order expansion

In this section we prove Theorem 2 stated in Section 1 using results from non-
linear renewal theory developed by Lai and Siegmund (1977,1979) and Hagwood and
Woodroofe (1982). The reader is referred to Woodroofe (1982) for thorough exposition
of the theory.
First, rewrite the stopping rule de�ned in (1.12) as

TA = inf{n¿nA: n(�=�̂n)¿(2A)1=2�}

= inf{n¿nA: Sn + �n¿(2A)1=2�}; (3.1)

where

Sn =
n∑
i=1

[1− (1=2)(�2i =�2 − 1)]

and

�n = (1=2)Qn=�2 + (3=8)�−5=2n n(�̂2n=�
2 − 1)2; (3.2)

where �n is a random variable such that |�n − 1|¡ |�̂2n=�2 − 1|. The last equality
in (3.1) is obtained by expanding (�2=�̂2n)

1=2 around 1 using Taylor’s theorem and
substituting the identity for �̂2n in (2.1). Clearly, Sn de�ned in (3.2) is a sum of i.i.d.
random variables with mean 1 and the sequence {�n; n¿1} can be shown to be slowly
changing (see, Woodroofe, 1982, for a de�nition). In fact, using arguments similar to
those in Section 3 of Sriram (1988) it is possible to show that the two terms in �n
denoted by

L1n = (1=2)Qn=�
2 and L2n = (3=8)�

−5=2
n n(�̂2n=�

2 − 1)2 (3.3)

slowly change sequences as well. With these observations we proceed to prove
Theorem 2.

Proof of Theorem 2. In view of the discussions above the asymptotic normality of
the standardized stopping rule in (1.16) would follow from Lemma 4:2 of Woodroofe
(1982) provided we show that �n=

√
n → 0 in probability. From (3.2), (3.3), (2.1),

(1.6) and the strong consistency of �̂2n de�ned in (1.11) we have that �n=
√
n → 0 in

probability. Hence the assertion in (1.16) is obtained.
As for the second-order expansion for the expected value of TA de�ned in (1.12)

we will use a slightly general version of Theorem 4:5 of Woodroofe (1982) given in
Sriram (1988); see Lemma 7. In Lemma 7 of Sriram (1988), set An; ln and � to be
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; 0 and 1. Also let �̃n= �n de�ned in (3.2) with L1n and L
2
n as de�ned in (3.3). Then,

by (1.6)

L1n
D→( 12 )�22 = L1 say as n→ ∞; (3.4)

and by (2.1), CLT, the fact that Qn=
√
n→ 0 in probability and �n → 1 in probability

we have that

L2n → (3=8)�21Var(�
2
1=�

2) = L2; say as n→ ∞: (3.5)

Therefore, conditions (3.7)–(3.9) of Lemma 7 of Sriram (1988) are satis�ed.
As for the veri�cation of (3.10) of Lemma 7 of Sriram (1988), for the set C de�ned

in the proof of Theorem 1 above, it readily follows from (2.6) of Proposition 2.1 that{
max

n1(A)6l6n2(A)
L1l IC ;A¿1

}
is u:i: (3.6)

Also,

max
n1(A)6l6n2(A)

L2nIC6(3=8) max
n1(A)6l6n2(A)

�−5=2l l(�̂2l =�
2 − 1)2IC ; (3.7)

where, by the de�nition of �l in (3.2),

max
n1(A)6l6n2(A)

�−5=2l IC61 + max
n1(A)6l6n2(A)

(�2=�̂2l )
5=2IC : (3.8)

Let dl= l�̂
2
l for l¿1 where �̂

2
l is de�ned in (1.11). Then, since �̂1; n and �̂2; n in (1.3)

and (1.4) are least-squares estimators, we have that dl6dl+1 for l¿1. Therefore,

max
n1(A)6l6n2(A)

(�2=�̂2l )
5=2IC6O(1)[(n1(A)− 1)�2=dn1(A)−1]5=2IC

= O(1); (3.9)

since the de�nition of TA implies that

C ⊂{[n1(A)− 1]¡ (2A)1=2�̂n1(A)−1}= G (3.10)

and on G

{[n1(A)− 1]�2=dn1(A)−1}5=2IG6 {(2A)1=2=[n1(A)− 1]}5IG
= O(1); (3.11)

where the fact used is that n1(A) = O(A1=2). From (3.8) to (3.11) we have that

max
n1(A)6l6n2(A)

L2l IC6O(1) max
n1(A)6l6n2(A)

l(�̂2l =�
2 − 1)2IC : (3.12)

From Doob’s maximal inequality (see Chow and Teicher, 1978, Corollary 10:3:2) it
can be shown that

 max
n1(A)6l6n2(A)

l−1
[

l∑
i=1

(�2i =�
2 − 1)

]2
;A¿1


 is u:i: (3.13)

Also,

E max
n1(A)6l6n2(A)

l−1Q2l 6 [n1(A)]−1E max
n1(A)6l6n2(A)

Q2l

→ 0; (3.14)
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by (2.6). Hence, it follows from (3.13), (3.14), (2.1) and (3.12) that{
max

n1(A)6l6n2(A)
L2l IC ;A¿1

}
is u:i: (3.15)

The veri�cation of condition (3.10) of Sriram (1988) now follows from (3.6) and
(3.15). Condition (3.11) of Sriram (1988) is trivially satis�ed and condition (3.12)
follows from (2.19). Therefore, by the conclusion of Lemma 7 of Sriram (1988), (3.4)
and (3.5) we have that

ETA = (2A)1=2� + �− 1− (3=8)Var(�21=�2) + o(1) (3.16)

as A→ ∞, where �= ES2�0 =2ES�0 for Sn de�ned in (3:2) and �0 = inf{n¿nA: Sn¿0}.
Hence the conclusion in (1:17) and the theorem are established.
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